
A Simple Method for Calculating Quantum Effects on the
Temperature Dependence of Bimolecular Reaction Rates: Application
to H2 + H f H + H2 and CH4 + H f CH3 + H2

David Z. Goodson,*,† Dustin W. Roelse,† Wan-Ting Chiang,† Steven M. Valone,‡ and
J. D. Doll§

Contribution from the Department of Chemistry, Southern Methodist UniVersity, Dallas, Texas 75275,
Materials Science and Technology DiVision, MST-8, Los Alamos National Laboratory, Los Alamos,
New Mexico 87545, and Department of Chemistry, Brown UniVersity, ProVidence, Rhode Island 02912

ReceiVed February 24, 2000. ReVised Manuscript ReceiVed July 11, 2000

Abstract: The temperature dependence of thermal rate constants for hydrogen atom abstraction reactions is
studied using transition-state theory with temperature-dependent effective potential energy functions derived
from a quantum mechanical path integral analysis with a low-temperature correction. The theory uses
temperature-dependent activation energies determined from Gaussian averages of an empirical potential. Simple
analytic expressions are obtained for rate constants. To test the theory the rate constant for H2 + H is calculated,
and the predicted curvature of the Arrhenius plot is shown to agree with results from accurate quantum scattering
calculations. The predicted curvature for CH4 + H is compared with experimental results and shown to give
better agreement with the observed temperature dependence than do commonly used empirical fits. The
expressionk(T) ) aT exp[-(E0 + E1Teff

-1 + E2Teff
-3/2)/RT], with Teff ) T + T0, is suggested for the rate

constant for CH4 + H, with the parametersa, E0, E1, E2, andT0 obtained from theory rather than by fitting to
the experimental reaction rates.

I. Introduction

The rigorous quantum mechanical calculation of a chemical
reaction rate is a daunting challenge. It requires an accurate ab
initio potential energy surface and then a solution of the difficult
quantum scattering equations for the dyanmics of the nuclei.
This has been accomplished in benchmark calculations for a
few simple systems.1 However, in practical applications such
as, for example, computer simulations of hydrocarbon combus-
tion,2,3 it is more typical simply to use empirical expressions
with parameters that are fit directly to experimentally determined
reaction rates. We develop here a semiempirical quantum-
mechanical description of reaction rates. Instead of an ab initio
potential surface, we use an empirical surface parametrized to
fit molecular atomization energies and spectroscopic data.4 To
describe the quantum dynamics we propose a simple semiclassi-
cal procedure that interpolates between known high- and low-
temperature limits.

In the limit T f ∞, it is possible to rigorously derive
semiclassical descriptions of the dynamics. A particularly
convenient approach is the effective potential approximation
developed by Feynman,5 in which the true potential surface,V,
is transformed to aT-dependent effective potential,Veff(T),

which can then be treated with classical mechanics. Although
an improvement over a purely classical description, the effective
potential approach can be somewhat inaccurate at intermediate
T, which in practice is the range of particular interest. One way
to extend the validity of the theory is to use a more sophisticated
version of the analysis,6,7 but this can obscure the appealing
physical picture given by Feynman’s approach. We propose a
very minor modification of the Feynman expression, in which
an empirical parameter is included to improve the accuracy at
low T. This theory remains correct atT f ∞, it gives the correct
result at T ) 0 K, and it preserves the straightforward
mathematical structure and elegant qualitative picture of the
effective quantum potential.

We will demonstrate this approach in the context of transition-
state theory (TST). This will provide a test of the accuracy of
the theoretical ideas. In addition, it will yield simple analytical
expressions for bimolecular rate constants that could be used
in combustion studies in place of the purely empirical expres-
sions. An important goal of reaction rate theory is the deter-
mination of temperature dependences of rate constants. The
Arrhenius expression,

whereEa is the activation energy andR is the gas constant, is
often not sufficient for quantitative descriptions.8 Ea is usually
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treated as if it were independent of temperature, and any
deviation from linear behavior in the plot of logk vs 1/T is
attributed to temperature dependence inA. Classical collision
theory suggests only a weak temperature dependence of the
preexponential factor, of the formA ∝ T1/2, while theoretical
arguments based on TST with corrections for quantum me-
chanical tunneling8-10 can predict significantly different de-
pendences. Our effective quantum potential transition-state
theory (EQPTST) will use a standard TST expression forA but
will include quantum effects such as tunneling and zero-point
energy through theT dependence of the effective potential.

First we will present results for the hydrogen exchange
reaction

This has previously been the subject of rigorous quantum
mechanical calculations and therefore is a good test case for
our simple approximate theory. Then we will consider the
reaction

for which there exists an extensive literature of theoretical and
experimental studies11-23 on account of its importance as an
elementary reaction in hydrocarbon pyrolysis and combustion.

II. Method

1. Quantum Theory.Feynman’s semiclassical analysis is based on
his path-integral formulation of quantum statistical mechanics. The
equation for the statistical density matrix is formally identical to that
for the kernel that expresses the time dependence of the wave function
of a quantum mechanical particle over a time interval that is taken to
be negative and imaginary. Thus, calculations in statistical mechanics
can be carried out using path-integral techniques of quantum dynamics.
To calculate the partition function from the statistical density matrix,
it is sufficient to consider only paths that return to their starting point.
The integrals that need to be evaluated are very difficult to evaluate
on account of the need to describe the many possible paths. However,
if T is sufficiently large then one can derive a simple approximate
expression for the canonical partition function,Z.5 For a system
described by the Hamiltonian-p2/2m d2/dx2 + V(x), the result is

wherekB is the Boltzmann constant and

The significance of this result is the fact that eq 4 has exactly the form
of the classical partition function, except thatV is replaced by the
effective potentialVeff, which is just a Gaussian average ofV with a
temperature-dependent standard deviationσ. This implies, for calcula-
tions in statistical mechanics, that an approximate quantum result can
be obtained simply by usingVeff in place ofV in an otherwise classical
calculation.

It has been suggested24 that classical dynamics on the potentialVeff

could be used to simulate quantum dynamics on the true potentialV.
For example, it was shown24 that whenVeff is used in place ofV in
TST for the rate constant with a one-dimensional barrier, one obtains
the standard Wigner tunneling correction. This approach can be derived
from a path-integral analysis as an approximation to centroid TST.25 It
has been used to describe the diffusion of H on a Cu surface,26 and the
results were later found to agree with those from an elaborate reaction-
path variational TST calculation with semiclassical adiabatic tunneling
corrections.27

EQPTST provides an appealing qualitative model for quantum
effects. At a minimum ofV, averaging over neighboring points with
eq 5 will increase the potential energy. This accounts for the fact that
the minimum ofV is, in practice, inaccessible to the system on account
of the impossibility of localizing a quantum mechanical particle. In
effect, the averaging provides a zero-point energy correction. At a
maximum ofV the averaging reduces the potential energy. In effect,
this is a tunneling correction. At a saddle point ofV, averaging over a
given coordinatezi will reduce the potential if∂2V/∂zi

2 is negative and
increase it if∂2V/∂zi

2 is positive. Elsewhere,V can be approximated as
a linear function, in which case the averaging in eq 5 will have little
effect. At high T the quantum effects will be small, because if the
average kinetic energy is large then only rarely will a particle have a
low enough kinetic energy that the difference betweenV andVeff will
significantly affect the dynamics. Accordingly, the standard deviation
given by eq 6 goes to zero in the limit of infiniteT.

At T ) 0 K, the system, according to classical mechanics, will be
at rest at the nearest minimum ofV. The quantum mechanical energy
of the system will be the value ofV at this minimum plus a zero-point
energy correction. A minimum ofVeff corresponds to a stable chemical
species, for which the zero-point energy can be determined empirically
from analysis of the vibrational spectrum. This suggests that we replace
T in eq 6 with an effective temperature, given by some functionTeff(T)
subject to the contraints

whereT0 is a constant chosen such that eq 5 atT ) 0 K reproduces the
empirical zero-point energy of a known species.

As an illustration of this interpolation between high- and low-
temperature limits, consider a one-dimensional harmonic oscillator of
massm and frequencyω. In this case, the exact quantum mechanical
partition function is obtained if in eq 5 we substitute forσ2 the
expression28

(9) Johnston, H. S.Gas-Phase Reaction Rate Theory; Ronald Press: New
York, 1966; pp 101-252, 321-328.

(10) Moore, J. W.; Pearson, R. G.Kinetics and Mechanisms; John Wiley
& Sons: New York, 1981; pp 158-213.

(11) Clark, T. C.; Dove, J. E.Can. J. Chem.1973, 51, 2147-2154.
(12) Shaw, R.J. Phys. Chem. Ref. Data1978, 7, 1179-1190 and

references therein.
(13) Tsang, W.; Hampson, R. F.J. Phys. Chem. Ref. Data1986, 15,

1087-1279.
(14) Schatz, G. C.; Walch, S. P.; Wagner, A. F.J. Chem. Phys.1980,

73, 4536-4547.
(15) Joseph, T.; Steckler, R.; Truhlar, D. G.J. Chem. Phys.1987, 87,

7036-7049.
(16) Lu, D.; Maurice, D.; Truhlar, D. G.J. Am. Chem. Soc.1990, 112,

6206-6214.
(17) Truong, T. N.J. Chem. Phys.1994, 100, 8014-8025.
(18) Walker, R. W.J. Chem. Soc. (Ser. A)19682391-2398.
(19) Sepehrad, A.; Marshall, R. M.; Purnell, H.J. Chem. Soc., Faraday

Trans. 11979, 75, 835-843.
(20) Baulch, D. L.; Cobos, C. J.; Cox, R. A.; Esser, C.; Frank, P.; Just,

Th.; Kerr, J. A.; Pilling, M. J.; Troe, J.; Walker, R. W.; Warnatz, J.J.
Phys. Chem. Ref. Data1992, 21, 412-734.

(21) Kurylo, M. J.; Timmons, R. B.J. Chem. Phys.1969, 50, 5076-
5082.

(22) Kurylo, M. J.; Hollinden, G. A.; Timmons, R. B.J. Chem. Phys.
1970, 52, 1773-1781.

(23) Rabinowitz, M. J.; Sutherland, J. W.; Patterson, P. M.; Klemm, R.
B. J. Phys. Chem.1991, 95, 674-681.

(24) Doll, J. D.J. Chem. Phys.1984, 81, 3536-3541.
(25) Voth, G. A.J. Chem. Phys.1991, 94, 4095-4096.
(26) Valone, S. M.; Voter, A. F.; Doll, J. D.Surf. Sci.1985, 155, 687-

699;J. Chem. Phys.1986, 85, 7480-7486;J. Chem. Phys.1987, 87, 2407.
(27) Lauderdale, J. G.; Truhlar, D. G.J. Am. Chem. Soc.1985, 107,

4590-4591.
(28) Doll, J. D.; Myers, L. E.J. Chem. Phys.1979, 71, 2880-2883.

H2 + H f H + H2 (2)

CH4 + H f CH3 + H2 (3)

Z ) (mkBT

2πp2)1/2∫ e-Veff(x)/kBT dx (4)

Veff(x) ) 1

x2πσ2
∫-∞

∞
V(x + z) e-z2/2σ2

dz (5)

σ2 ) p2

12mkBT
(6)

lim
T f ∞

Teff(T) ) T, Teff(0) ) T0 (7)
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We can make the high-temperatureσ2, given by eq 6, agree quite well
with σHO

2 at low T by simply substitutingTeff ) T + T0 for T in eq 6
with T0 ) pω/12kB. Figure 1 shows that this substitution signifi-
cantly improves the accuracy of the high-temperature formalism of
eqs 4 and 5.

Molecular potential energy surfaces are, of course, anharmonic. In
particular, the potential energy of a diatomic molecule is steeper for
compressing the bond than it is for stretching the bond. The use of
σHO

2 to describe the spread of the quantum averaging gives equal weight
to bond compression and stretching. In reality, quantum excursions are
less likely to venture into steeper regions. Therefore, use of a symmetric
probability distribution overestimates the zero-point energy, which
yields too small a value for the bond energy. This problem is even
worse if the high-T distribution, eq 6, is used. That result comes from
an analysis in which the effect of the potential energy on the probability
of a given quantum excursion is ignored completely. Hence, the high-T
analysis leads to an even smaller value for the bond energy. We wish
to avoid the computational complexity of an analysis in whichσ2

depends onV. However, since we expect that a more accurate treatment
of the quantum mechanics would give a slightly smaller bond energy,
we will mimic this effect by using eq 6 with a functional form forTeff

consistent with the limits given by eqs 7 but that at intermediateT
gives a value ofσ2 that is slightly smaller thanσHO

2. The class of
functions

characterized by the free parameterγ, with γ > 1, satisfies these criteria.
2. Application to H + H2. The minimum-energy activated complex

for this reaction is linear. Therefore, we will treat this as a problem in
two degrees of freedom, in terms of the collinear bond distancesx and
y. For V we use Brenner’s potential I,4 which is a sum of two-body
interactions with perturbations from nearby atoms. For H+ H2 it has
the form

In VHH, the first argument is the primary two-body coordinate, while
the second argument describes the position of the neighboring atom.
VHH is the sum of repulsive and attractive potentials, in the form

This is a Morse function that has been modified by the functionsf and
B. f(q) is a cutoff function that smoothly interpolates to zero at large
q. B is a rather complicated function that models the effects of nearby
atoms on the primary interaction.

The variance for the Gaussian averaging is given by

Note that the mass in eq 6 has been replaced by the reduced mass,µHH

) mH/2. The effective potential isVeff(x,y) ) VhHH(x;y) + VhHH(y;x), where

In principle, this integration ought to be performed in three-dimensional
space, over vector displacementszx andzy. However, we have found
that integration in one-dimensional space is accurate enough, introducing
significant error only for the very high energy configurations corre-
sponding to smallx or y. We will evaluate the integral using numerical
quadrature. The value

gives agreement with the spectroscopically determined zero-point
energy of 6.29 kcal/mol for H2.29

3. Application to Hydrocarbon Reactions. Now consider the
reaction CH4 + H. We will denote the reacting hydrogen of methane
as H′ and the nonreacting hydrogens as Ha, Hb, and Hc. Let x be the
C-H′ distance, lety be the H′-H distance, and letra, rb, andrc be the
nonreacting C-HR distances. The C-H′-H configuration is collinear
along the reaction path. The angle between the reactive and nonreactive
C-H bonds will be treated as a quadratic polynomial inx that
interpolates between 109.5° for CH4, 90° for CH3, and 102.4° at x )
1.47 Å.14

The Brenner potential takes the form

with

where q is the primary coordinate ands is the set of secondary
coordinates. (In principle, eq 15 ought to contain in addition a term
describing the Ha-H′ potentials, but these interactions are negligible
along the entire course of the reaction path.) The secondary effects are
relatively small. Therefore, it is possible to reduce the computational
cost of the quadrature with little effect on the accuracy by introducing
an approximation into the integration over secondary C-H distances.
Consider the quadrature forVCH′. The effective potential for the C-H′
interaction will require the integral

Only the casera ) rb ) rc ≡ r will be of interest to us. If we replace
B with its Taylor expansion in powers of thezR, then

The notation O(σ4) means that the error from this approximation will
be proportional toσ4 in the limit of small σ. Similarly, the effective
potential for the C-HR interaction, with secondary nonreacting C-H
distances set tor, will require the integral

(29) Huber, K. P.; Herzberg, G.Molecular Spectra and Molecular
Structure: IV. Constants of Diatomic Molecules; Van Nostrand Reinhold:
New York, 1979; p 250.

σHO
2 )

2kBT

mω2
ln[sinh(pω/2kBT)

pω/2kBT ] (8)

Teff
(γ) ) (T1/γ + T0

1/γ)γ (9)

V(x,y) ) VHH(x;y) + VHH(y;x) (10)

VHH(q;s) ) f(q){D(R) exp[-â(R)(q - q(e))] -

B(q,s)D(A) exp[-â(A)(q - q(e))]} (11)

σHH
2 ) p2/12µHHkBTeff,HH (12)

VhHH(x;y) )
1

2πσHH
2∫-∞

∞ ∫-∞

∞
e-(zx

2 + zy
2)/2σHH

2
VHH(x + zx;y + zy) dzx dzy (13)

T0,HH ) 513 K (14)

Figure 1. Ratio of Gaussian varianceσHO
2, eq 8, for the one-

dimensional harmonic oscillator to the Gaussian varianceσ2, eq 6, from
the high-temperature analysis. The dashed curve shows the result from
approximatingσHO

2 with eq 6 but withT + T0 substituted forT.

V(x,y,ra,rb,rc) ) VCH′(x;y,ra,rb,rc) + VHH′(y;x) + ∑
R

VCHR
(rR;x,râ,rγ)

(15)

Vij(q;s) ) fij(q){Dij
(R) exp[-âij

(R)(q - qij
(e))] -

Bij(q,s)Dij
(A) exp[-âij

(A)(q - qij
(e))]} (16)

hH′(x;r ) ) (2πσ2)-3/2∫-∞

∞ ∫-∞

∞ ∫-∞

∞
B(x,ra + za,rb + zb,rc + zc) ×
e-(za

2 + zb
2 + zc

2)/2σ2
dza dzb dzc (17)

hH′(x;r) ) B(x,r,r,r) + 3σ21
2

∂
2B

∂ra
2
|ra ) r + O(σ4)

) 3(2πσ2)-1/2∫-∞

∞
B(x,r + z,r,r) e-z2/2σ2

dz -

2B(x,r,r,r) + O(σ4) (18)
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Thus, theh functions can be computed with one-dimensional quadra-
tures, reducing the calculation ofVeff from a four-dimensional quadrature
to a two-dimensional one. For example, the effective potential for the
C-H′ interaction is

The physical meaning of this approximation is that, in calculating the
effective potential for a primary C-H interaction, the only quantum
fluctuations of secondary nonreacting C-H bonds that we will consider
are those in which one of these bond distances fluctuates while the
others remain fixed at their equilibrium values. In other words, for
purposes of computing quantum effects on the activation energy, we
are ignoring four-body effects while including all two- and three-body
effects.

Note that we will need a different value ofσ for a C-H bond than
for an H-H bond, on account of the different values for the reduced
mass and forT0. The value

gives agreement with the spectroscopically determined zero-point
energy of 28.3 kcal/mol for CH4.30 There is a minor inconsistency in
using the Brenner potential with an effective temperature for C-H
bonds. For the C-H well depth, Brenner used the bond energy of the
CH molecule without subtracting the zero-point energy.4 Thus, we are,
in a sense, adding zero-point energy to a potential that already includes
it. We will assume that any errors from this procedure will be
insignificant, since the quantum effects for C-H interactions are smaller
than those for H-H interactions and because the rate analysis depends
on an energy difference rather than on absolute atomization energies.
However, in principle, one ought to reparametrize the potential using
the correct well depth. For the H-H potential, Brenner did correct the
H2 well depth for zero-point energy.4

III. Results

1. H2 + H f H + H2. This reaction is the standard test case
for theoretical methods. Since it involves only H atoms the
quantum effects will be relatively large, making this a stringent
test for an approximate quantum theory.

We have calculated the temperature-dependent activation
energy as the difference betweenVeff evaluated at the linear H3
saddle point and at the reactants well. The values are fit by the
expression

whereτ ) 1/Teff. The maximum error from eq 22 is(0.005
kcal/mol for Teff > 670.

Our strategy is to substituteEa(Teff
(γ))/T, with Teff

(γ) given by
eq 9, into the Arrhenius expression, eq 1, while using an
otherwise conventional reaction rate theory to determine the
temperature dependence of the prefactorA. Empirical fits
typically use the form2,3,13,20,23

wherea andb are adjustable parameters. In contrast, TST uses10

in terms of partition functionsQt, Qr, andQv for translational,
rotational, and vibrational motion, respectively. The temperature
dependence of the partition functions is

The TST expression fork is complicated by the dependence on
the vibrational frequencies,ωi, of the reactants and of the
activated complex, but it can be simplified to the form of eq 23
through approximations. Expanding theQv about the high-T
limit gives b ) 3/2, while taking the low-T limit of the Qv gives
b ) -1/2.

Careful benchmark calculations fork are available for the
case of zero total angular momentum (J ) 0) from rigorous
quantum scattering theory (QST)31,32 or flux autocorrelation
function calculations (FACF),33 using a Born-Oppenheimer
potential surface fit to ab initio electronic energies. Such
calculations have also been carried out, approximately, forJ >
0 and then the total rate constant obtained from a weighted sum
overJ.31,33(Our present analysis and those of refs 31-33 assume
that the three H atoms are distinguishable. These results can be
approximately related to indistinguishable-atom calculations34

and to experimentally determined rate constants as described
in ref 35.) Figure 2 compares the QST and FACF results for
total rate constants with our results from TST with different
expressions for the Gaussian variance. To emphasize the
nonclassical curvature, we plot logk-log kcl, wherekcl is the
expression from classical collision theory,

with a chosen so thatkcl ) 3.20× 10-13 cm3 molecule-1 s-1

at 1000 K, which is the average of the QST and FACF
results.31,33The solid curves use the full TST expression, which
can be written as

with

where theI∞’s are the moments of inertia from the classical
potential (i.e., at infiniteT). The function

is an accurate fit to the weakT dependence of the ratio of
moments of inertia that comes from the effects of the Gaussian
averaging on the values of the bond distances. The function
fv(T) is the ratio of theQv in eq 24, which we have evaluated

(30) Jones, L. H.; McDowell, R. S.J. Mol. Spectrosc.1959, 3, 632-
653.

(31) Colton, M. C.; Schatz, G. C.Int. J. Chem. Kinet.1986, 18, 961-
975.

(32) Chatfield, D. C.; Truhlar, D. G.J. Chem. Phys.1991, 94, 2040-
2044.

(33) Matzkies, F.; Manthe, U.J. Chem. Phys.1997, 106, 2646-2653.
(34) Park, T. J.; Light, J. C.J. Chem. Phys.1989, 91, 974-988.
(35) Truhlar, D. G.J. Chem. Phys1976, 65, 1008-1010.

hHR
(rR;r,x) ) 2(2πσ2)-1/2∫-∞

∞
B(rR,r + z,r,x) e-z2/2σ2

dz +

(2πσ2)-1/2∫-∞

∞
B(rR,r,r,x + z) e-z2/2σ2

dz - 2B(rR,r,r,x) + O(σ4)

(19)

VhCH′(x;r) ) (2πσCH
2)-1/2∫-∞

∞
e-z2/2σCH

2
hH′(x + z;r) dz + O(σCH

4)

(20)

T0,CH ) 247 K (21)

Ea ) 9.806 kcal mol-1 - (2196 kcal mol-1 K)τ +

(5369 kcal mol-1 K3/2)τ3/2 (22)

A ) aTb (23)

A ∝ T 1/2
Qt,H3

Qr,H3
Qv,sym stretchQv,bend

2Qt,antisym stretch

Qt,HQt,H2
Qr,H2

Qv,H2

(24)

Qt ∝ T 3/2, Qr ∝ T, Qv ) [1 - exp(-pω/kBT)]-1,

Qt,antisym stretch∝ T 1/2 (25)

kcl ) aT1/2 e-Ea,∞/RT (26)

k ) RT -1/2fr(T)fv(T) exp[-Ea(Teff
(γ))/RT] (27)

R ) 2kBh2( 3
4πkBmH

)3/2
I∞

q/I∞
(H2) (28)

fr(T) ) 1 - 22.5K/Teff (29)
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using vibrational frequencies from ref 36. The dotted curve
corresponds to conventional TST with the activation energy set
to the constantEa,∞, which for the Brenner potential is 9.806
kcal/mol. The other three curves show results from representa-
tive TST treatments with tunneling corrections; specifically, the
dashed and dash-dot curves are from conventional TST
calculations by Espinosa-Garcı´a et al.37 using corrections of the
Eckart or Wigner forms, respectively, while the dash-dot-dot
curve is from the variational TST of Garrett et al.,38 with a
multidimensional semiclassical least-action tunneling correction
and the same potential that was used in the QST and FACF
calculations.

Our EQPTST withγ ) 1.5 gives excellent agreement with
the FACF and QST results at all temperatures except the lowest
(250 K), where it gives a value that is somewhat too small. We
find39 thatγ ) 1.5 also gives excellent agreement with the exact
rate constants with isotopic substitution of D for H. It is clear
from eq 9 that the sensitivity of the results to the value chosen
for γ decreases asT0 decreases, andT0 decreases as the atomic
masses increase. Thus, even if 1.5 were not exactly the optimal

value for other systems, this would probably not cause too much
error in the rate constants, sinceT0 for most molecules of interest
will be much smaller than the H2 value. Therefore, we will treat
γ ) 1.5 as a general result that will be reasonably accurate for
arbitrary systems.

Figure 3 shows EQPTST results calculated with various
approximations to eq 27 that put the prefactor in the standard
form of eq 23. The low-T approximation fails above 600 K,
while the high-T expression fails below 2000 K. However, the
expression

with a chosen so thatk is equal to the full TST result at 1000
K, is in close agreement with the full expression over a very
wide range ofT. This is shown by the dashed curve in Figure
3. Equation 30 was constructed as a compromise between the
low- and high-T limits. At lower values ofT, the use ofT 1

instead ofT -1/2 makesk slightly too small, while the use ofγ
) 1 instead of 1.5 makesk slightly too large. This cancellation
of errors is excellent for 150< T < 1500 K. At very highT,
the approximate expression will lie somewhat below the full
expression, but this might actually yield a more accurate result
for the true rate constant. TST in the limit of highT breaks
down due to barrier recrossings, which causes the predicted rate
constant to be higher than the actual rate constant. Variational
TST partly corrects for this effect, and eq 30 at 1500 K yields
a result (1.02× 10-11 cm3 molecule-1 s-1) that is closer to the
variational TST result of Garrett et al. (0.98× 10-11 cm3

molecule-1 s-1) than is our full nonvariational TST result (1.05
× 10-11 cm3 molecule-1 s-1).

2. CH4 + H f CH3 + H2. This reaction will have the same
limiting T dependence in the Arrhenius prefactor as H2 + H,
that is,T -1/2 at low T andT 3/2 at highT. Therefore, the argu-
ments that led to eq 30 should be valid as well for CH4 +
H. We obtained temperature-dependent activation energies as

(36) Truhlar, D. G.; Horowitz, C. J.J. Chem. Phys.1978, 68, 2466-
2476.

(37) Espinosa-Garcı´a, J.; Olivares del Valle, F. J.; Corchado, J. C.Chem.
Phys.1994, 183, 95-100.

(38) Garrett, B. C.; Truhlar, D. G.; Varandas, A. J. C.; Blais, N. C.Int.
J. Chem. Kinet.1986, 18, 1065-1077.

(39) Goodson, D. Z.; Boyd, A. D., unpublished.

Figure 2. Difference between log10 k and log10 kcl vs 1000 K/T for H2

+ H f H + H2, with k andkcl in units of cm3 molecule-1 s-1. kcl is the
rate constant from classical collision theory, eq 26, with temperature-
independentEa and prefactora ) 3.50× 10-14 cm3 K-1/2 molecule-1

s-1. Diamonds indicate results from quantum scattering theory,31 while
squares indicate flux autocorrelation function results.33 The solid curves
show results from EQPTST, using eq 27 with the one-dimensional
harmonic oscillator expression, eq 8 forσ2, or with σ2 given by eq 6
with Teff equal toT or with Teff given by eq 9 with the indicated value
of the parameterγ. The dashed and the dash-dot curves correspond
to conventional TST with a Wigner or Eckart tunneling correction,
respectively.37 The dash-dot-dot curve corresponds to variational TST
with a multidimensional tunneling correction,38 while the dotted curve
shows conventional TST, eq 27, with classical temperature-independent
activation energy.

Figure 3. Difference between log10 k and log10 kcl vs 1000 K/T for H2

+ H f H + H2, with k and kcl in units of cm3 molecule-1 s-1. The
units of k are cm3 molecule-1 s-1. Diamonds indicate results from
quantum scattering theory,31 while squares indicate flux autocorrelation
function results.33 The solid curve corresponds to EQPTST, using eqs
27 and 9 withγ ) 1.5. The dotted and the dash-dot curves show the
low- and high-temperature limits of EQPTST. The dashed curve
corresponds to the simplified EQPTST expression given by eq 30 with
prefactora ) 1.35× 10-13 cm3 K-1 molecule-1 s-1.

k ) aT exp[-Ea(Teff
(1))/RT] (30)
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the difference betweenVeff evaluated at the reactants well and
at the CH5 saddle point, using a linear C-H-H configuration.
For the standard deviationsσHH andσCH, the effective temper-
ature functionTeff

(1) was used.Ea is fit by the expression

within (0.016 kcal/mol over the range 0e 1000K/T e 3.5.
Equation 31 has the form of an expansion in terms ofσCH. The
calculation of the CH5 energy usesσCH only for the integration
over C-H bonds andσHH for the H-H bond. Nevertheless, a
fit for Ea with T0 treated as a free parameter yieldsT0,CH as
very nearly the optimal value.

Experimental results for this reaction span a temperature range
from 372 to almost 2000 K. TST studies11-17 have predicted a
distinct upward curvature in the Arrhenius plot, and a review
by Shaw12 of experimental results through the year 1978
supported this prediction. Subsequently, Sepehrad et al.19

concluded that a linear Arrhenius plot was more consistent with
the data, after omitting some apparently unreliable earlier results
and adding new results of their own. More recent analyses by
Baulch et al.20 and by Rabinowitz et al.23 discerned curvature
with A ∝ T 3 andA ∝ T 2.11, respectively, while the GRI-Mech
database for combustion modeling3 currently usesA ∝ T 1.62.

Figure 4 compares the experimental results for the rate
constant with theoretical results and empirical fits. The experi-
mental points correspond to (0) the ESR flow-tube studies of
Kurylo et al.,21,22 (×) the flow-discharge study of Sepehrad et
al.,19 (+) the flash-photolysis shock-tube study of Rabinowitz
et al.,23 and (]) other miscellaneous earlier studies reviewed
by Shaw.12 (However, we have omitted the result from Rost
and Just40 on account of the critique of that study by Rabinowitz
et al.23) The solid curve is our result from EQPTST using the
simplified expression, eq 30, for the rate constant and eq 31
for theEa, and with the prefactor chosen to agree with the full
EQPTST result at 1000 K. The dashed and dash-dot curves
show empirical fits that have recently been recommended for
use in combustion modeling. The dashed curve comes from the
expression given by Glassman2 in the latest edition of his
textbook. This expression is similar to the one recommended
by Baulch et al.20 The dash-dot curve corresponds to the
expression in the GRI-Mech database.3 Finally, the dotted curve
shows the results of Truong’s variational TST analysis with
multidimensional semiclassical tunneling correction.17

Conclusion

Figure 4 shows that a simple analytical expression, eq 30,
with a temperature-dependent activation energy determined from
a Gaussian average of an empirical potential energy function
gives good agreement with experimental rate constants for CH4

+ H over the full temperature range for which they are available.
This is especially striking since none of the parameters in the
expression were determined by fitting to the experimental points.

The approach presented here provides a middle ground
between the purely empirical fits that are generally used in
practical applications and the highly sophisticated, but compu-
tationally demanding, ab initio theoretical treatments. Since our
method is based on an empirical potential energy surface, it is
in essence an empirical fit. However, the empirical data set is
not limited to the rate constants themselves. It includes,
indirectly, the wide range of hydrocarbon properties such as
molecular geometries and atomization energies used in the
parametrization of the potential. (We have, in effect, augmented
Brenner’s original data set with the three parametersT0,HH,
T0,CH, andγ.) We obtain analytic expressions that are not much
more complicated than the standard empirical forms, but because
they contain a much greater variety of empirical information,
and because the functional form of the temperature dependence
is justified theoretically, they can be expected to be more
dependable at temperatures at which experimental results are
unavailable. This is a significant advantage, since rate constants
for reactions involving free radicals are difficult to measure
experimentally, especially over the large temperature ranges that
are needed for modeling the chemistry of the atmosphere and
the extremely large temperature ranges needed to model such
processes as pyrolysis and combustion.

In the present work, calculations were performed in the
context of TST. Another approach to reaction rate calculations
is direct simulation using molecular dynamics. The success of
our EQPTST has two implications for such simulations. First,
it supports the use41 of the Brenner hydrocarbon potential in
those studies. This is an empirical potential, parametrized to a
data set consisting of properties ofstablechemical species, yet
judging from the success of our rate constant calculations it

(40) Rost, P.; Just, Th.Ber. Bunsen-Ges. Phys. Chem.1975, 79, 682-
686.

(41) Brenner, D. W.; Garrison, B. J.AdV. Chem. Phys.1989, 71, 281-
334. Garrison, B. J.; Dawnkaski, E. J.; Srivastava, D.; Brenner, D. W.
Science1992, 255, 835-838.

Figure 4. Difference between log10 k and log10 kcl vs 1000 K/T for
CH4 + H f CH3 + H2, with k andkcl in units of cm3 molecule-1 s-1.
kcl is the is the rate constant from classical collision theory, eq 26,
with temperature-independentEa and prefactora ) 3.65× 10-12 cm3

K-1/2 molecule-1 s-1. The solid curve corresponds to the simplified
EQPTST expression given by eq 30 with prefactora ) 8.78× 10-14

cm3 K-1 molecule-1 s-1. The dotted curve corresponds to variational
quantum TST.17 The dashed and dash-dot curves show empirical fits
from refs 2 and 3, respectively. The symbols indicate experimental
points from the following references: Rabinowitz et al.23 (+); Sepehrad
et al.19 (×); Kurylo et al.21,22 (0); and various earlier studies reviewed
by Shaw12 (]).

Ea ) 12.00 kcal mol-1 - (1209 kcal mol-1 K)(T + T0,CH)
-1

+ (7401 kcal mol-1 K3/2)(T + T0,CH)
-3/2 (31)
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seems to be able to accurately model the unstable CH5 transition
state, since the curvature of the Arrhenius plot depends
sensitively on the topography of the potential in the vicinity of
the saddle point.

The second implication is that it might be possible to use a
classical molecular dynamics calculation with a Gaussian-
averaged effective potential in place of quantum dynamics to
model processes in which quantum effects are important. The
evaluation of the potential function is the most time-consuming
step in a molecular dynamics simulation. Therefore, the use of
numerical quadrature to perform the Gaussian averaging in such
computations would be impractical. However, we are developing
analytic expressions that approximate the necessary integrals
so that the computational cost of calculating the potential will
not be substantially increased.

In the present work our goal has been to develop approxima-
tions that put the path-integral expression for quantum dynamics
in a form that requires only minor modifications of the usual
classical dynamics approaches to reaction rate theory. If nec-
essary, the effects of these approximations could be quantified
(at the cost of additional computational expense) by using more
rigorous path-integral methods.7,25
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